70 research outputs found

    Uncertainty Propagation and Sensitivity Analysis of Coupled Thermalhydraulic-Neutronic Nuclear Power Plant Simulations: Influence of Uncertainty in Neutronic Data

    Get PDF
    AbstractThis paper presents a study of the influence of the uncertainty in the macroscopic neutronic information for a three-dimensional PWR core model on the core power and reactivity during a Reactivity Induced Accident (RIA). The analysis uses a coupled thermal-hydraulic and neutronic model for RELAP5-PARCS. The SIMTAB methodology provides neutronic information. The statistical methodology assumes uncertainty in the macroscopic cross sections, whose pdfs are sampled and the Noether-Wilks formulas for Tolerance Intervals determine the sample size. Non-parametric statistical methods determine the intervals of tolerance and sensitivities of the sample for core power, fuel enthalpy, fuel temperatures and reactivity values

    Assessment of the Performance of a Modified USBR Type II Stilling Basin by a Validated CFD Model

    Full text link
    [EN] The adaptation of existing dams is of paramount importance to face the challenge posed by climate change and new legal frameworks. Thus, it is crucial to optimize the design of stilling basins to reduce the hydraulic jump dimensions without jeopardizing the energy dissipation in the structure. A numerical model was developed to simulate a US Bureau of Reclamation Type II basin. The model was validated with a specifically designed physical model and then was used to simulate and test the performance of the basin after adding a second row of chute blocks. The results showed a reduction in the hydraulic jump dimensions in terms of the sequent depth ratio and the roller length, which were respectively 2.5% and 1.4% lower in the modified design. These results would allow an estimated increase of the discharge in the basin close to 10%. Furthermore, this new design had 1.2% higher efficiency. Consequently, the modifications proposed for the basin design suggest improved performance of the structure. The issue of the hydraulic jump length estimation also was discussed, and different approaches were introduced and compared. These methods follow a structured and systematic procedure and gave consistent results for the developed models.The authors acknowledge the collaboration of the Hydraulics Laboratory of the Department of Hydraulic Engineering and Environment from Universitat Politecnica de Valencia (UPV) and their technicians Juan Carlos Edo and Joaquin Oliver in the construction of the experimental device used for the numerical model setup and validation. The work was supported by the research project "La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas" (BIA2017-85412-C2-1-R), funded by the Spanish Agencia Estatal de Investigacion and FEDER.Macián-Pérez, JF.; Vallés-Morán, FJ.; García-Bartual, R. (2021). Assessment of the Performance of a Modified USBR Type II Stilling Basin by a Validated CFD Model. Journal of Irrigation and Drainage Engineering. 147(11):1-12. https://doi.org/10.1061/(ASCE)IR.1943-4774.00016231121471

    Study of the Effects on Turbocharger Performance Generated by the Presence of Foreign Objects at the Compressor Intake

    Full text link
    The study performed on this work consists of evaluating the consequences of the introduction of various foreign objects at the compressor inlet of a turbocharger. The most plausible objects were selected. A specific test bench was set up in order to perform the experiment and measure the compression ratio and compressor efficiency evolution. Measurements were performed before (healthy compressor) and after the object introduction (damaged compressor). Results obtained indicate that losses in performance can be very important, but also that the compressor can swallow hard objects without visible damage. Therefore the experiments were filmed with a high speed camera. Visual information has helped to better understand the phenomenon, to explain the measurements and it has been taken into account in order to perform final diagnosis. As expected, the harder the object is and the longer it hits compressor wheel before being swallowed, the most severe is the damage. Nevertheless, softer material can reach abnormal performance but in randomly manner and such incipient damage can be detected easily in high air flow rates than in lower.The authors wish to thank Spanish Grant TRA2007-65433/TAIR from Ministerio de Educacion y Ciencia. D.G. Investigacion for supporting this work.Serrano Cruz, JR.; Tormos Martínez, BV.; Gargar, KL.; Bouffaud, F. (2013). Study of the Effects on Turbocharger Performance Generated by the Presence of Foreign Objects at the Compressor Intake. Experimental Techniques. 37(2):30-40. https://doi.org/10.1111/j.1747-1567.2011.00795.xS3040372Watson, N., & Janota, M. S. (1982). Turbocharging the Internal Combustion Engine. doi:10.1007/978-1-349-04024-7Gjika , K. Larue , G.D. “Dynamic Behaviour of Rotor-Bearing Systems Involving Two Oil Films in Series-Application to High-Speed Turbochargers,” IMechE Conference Transactions C602/021/2002. Seventh International Conference on Turbochargers and Turbocharging 2002Galindo, J., Serrano, J. R., Guardiola, C., & Cervelló, C. (2006). Surge limit definition in a specific test bench for the characterization of automotive turbochargers. Experimental Thermal and Fluid Science, 30(5), 449-462. doi:10.1016/j.expthermflusci.2005.06.002Engels , B. “Lifetime Prediction for Turbocharger Compressor Wheels-Why Use Titanium?” IMechE Conference Transactions C602/037/2002. Seventh International Conference on Turbochargers and Turbocharging 2002Ahdad , F. Soare , M.A. “Prediction of Duration of Life of Automotive Components under Thermomechanical Fatigue,” IMechE Conference Transactions C602/020/2002. Seventh International Conference on Turbochargers and Turbocharging 2002Holmes , R. “Turbocharger Vibration - A Case Study,” IMechE Conference Transactions C692/031/2002. Seventh International Conference on Turbochargers and Turbocharging 2002Zhao , X. He , H. Xu , S. “Influence of the Floating-Ring Bearing Parameters on Stability of Turbocharger Rotor-Bearing System,” Proceedings of the Fourth International Symposium of Fluid Machinery and Fluid Engineering. 421 425 2008SAE J1826 Turbocharger Gas Stand Test Code, Recommended Practice 1995Luján , J.M. Bermudez , V. Serrano , J.R. Cervelló , C. “Test Bench for Turbocharger Groups Characterization,” SAE Paper 2002-01-0163.Serrano , J.R. Guardiola , C. Dolz , V. Tiseira , A. Cervelló , C. “Experimental Study of the Turbine Inlet Gas temperature influence on Turbocharger Performance,” SAE Paper 2007-01-1559.Macián, V., Luján, J. M., Bermúdez, V., & Guardiola, C. (2004). Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement. Measurement Science and Technology, 15(6), 1185-1194. doi:10.1088/0957-0233/15/6/020The International Council on Combustion Engines (CIMAC) Turbocharging Efficiencies - Definitions and Guidelines for Measurements and Calculation 200

    Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach

    Full text link
    [EN] Adaptation of stilling basins to higher discharges than those considered for their design implies deep knowledge of the flow developed in these structures. To this end, the hydraulic jump occurring in a typified United States Bureau of Reclamation Type II (USBR II) stilling basin was analyzed using a numerical and experimental modeling approach. A reduced-scale physical model to conduct an experimental campaign was built and a numerical computational fluid dynamics (CFD) model was prepared to carry out the corresponding simulations. Both models were able to successfully reproduce the case study in terms of hydraulic jump shape, velocity profiles, and pressure distributions. The analysis revealed not only similarities to the flow in classical hydraulic jumps but also the influence of the energy dissipation devices existing in the stilling basin, all in good agreement with bibliographical information, despite some slight differences. Furthermore, the void fraction distribution was analyzed, showing satisfactory performance of the physical model, although the numerical approach presented some limitations to adequately represent the flow aeration mechanisms, which are discussed herein. Overall, the presented modeling approach can be considered as a useful tool to address the analysis of free surface flows occurring in stilling basins.This research was funded by 'Generalitat Valenciana predoctoral grants (Grant number [2015/7521])', in collaboration with the European Social Funds and by the research project: 'La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas' (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy.Macián Pérez, JF.; García-Bartual, R.; Huber, B.; Bayón, A.; Vallés-Morán, FJ. (2020). Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water. 12(1):1-20. https://doi.org/10.3390/w12010227S120121Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. ​José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018Chanson, H. (2008). Turbulent air–water flows in hydraulic structures: dynamic similarity and scale effects. Environmental Fluid Mechanics, 9(2), 125-142. doi:10.1007/s10652-008-9078-3Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914Chanson, H. (2013). Hydraulics of aerated flows:qui pro quo? Journal of Hydraulic Research, 51(3), 223-243. doi:10.1080/00221686.2013.795917Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 33, 1-22. doi:10.1016/j.envsoft.2012.02.001Wang, H., & Chanson, H. (2015). Experimental Study of Turbulent Fluctuations in Hydraulic Jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi:10.1061/(asce)hy.1943-7900.0001010Valero, D., Viti, N., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment. Water, 11(1), 36. doi:10.3390/w11010036Viti, N., Valero, D., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. doi:10.3390/w11010028Bayon-Barrachina, A., & Lopez-Jimenez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 17(4), 662-678. doi:10.2166/hydro.2015.041Teuber, K., Broecker, T., Bayón, A., Nützmann, G., & Hinkelmann, R. (2019). CFD-modelling of free surface flows in closed conduits. Progress in Computational Fluid Dynamics, An International Journal, 19(6), 368. doi:10.1504/pcfd.2019.103266Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896-909. doi:10.1016/j.expthermflusci.2011.01.009Zhang, G., Wang, H., & Chanson, H. (2012). Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189-204. doi:10.1007/s10652-012-9254-3Mossa, M. (1999). On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research, 37(4), 541-558. doi:10.1080/00221686.1999.9628267Chanson, H., & Brattberg, T. (2000). Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow, 26(4), 583-607. doi:10.1016/s0301-9322(99)00016-6Murzyn, F., Mouaze, D., & Chaplin, J. R. (2005). Optical fibre probe measurements of bubbly flow in hydraulic jumps. International Journal of Multiphase Flow, 31(1), 141-154. doi:10.1016/j.ijmultiphaseflow.2004.09.004Gualtieri, C., & Chanson, H. (2007). Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Environmental Fluid Mechanics, 7(3), 217-238. doi:10.1007/s10652-006-9016-1Chanson, H., & Gualtieri, C. (2008). Similitude and scale effects of air entrainment in hydraulic jumps. Journal of Hydraulic Research, 46(1), 35-44. doi:10.1080/00221686.2008.9521841Ho, D. K. H., & Riddette, K. M. (2010). Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Australian Journal of Civil Engineering, 6(1), 81-104. doi:10.1080/14488353.2010.11463946Dong, Wang, Vetsch, Boes, & Tan. (2019). Numerical Simulation of Air–Water Two-Phase Flow on Stepped Spillways Behind X-Shaped Flaring Gate Piers under Very High Unit Discharge. Water, 11(10), 1956. doi:10.3390/w11101956Toso, J. W., & Bowers, C. E. (1988). Extreme Pressures in Hydraulic‐Jump Stilling Basins. Journal of Hydraulic Engineering, 114(8), 829-843. doi:10.1061/(asce)0733-9429(1988)114:8(829)Houichi, L., Ibrahim, G., & Achour, B. (2006). Experiments for the Discharge Capacity of the Siphon Spillway Having the Creager-Ofitserov Profile. International Journal of Fluid Mechanics Research, 33(5), 395-406. doi:10.1615/interjfluidmechres.v33.i5.10Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic Design of a USBR Type II Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. doi:10.1061/(asce)ir.1943-4774.0001150Hirt, C. ., & Nichols, B. . (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. doi:10.1016/0021-9991(81)90145-5Bombardelli, F. A., Meireles, I., & Matos, J. (2010). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263-288. doi:10.1007/s10652-010-9188-6Pope, S. B. (2001). Turbulent Flows. Measurement Science and Technology, 12(11), 2020-2021. doi:10.1088/0957-0233/12/11/705Harlow, F. H. (1967). Turbulence Transport Equations. Physics of Fluids, 10(11), 2323. doi:10.1063/1.1762039Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1(2), 131-137. doi:10.1016/0094-4548(74)90150-7Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424Li, S., & Zhang, J. (2018). Numerical Investigation on the Hydraulic Properties of the Skimming Flow over Pooled Stepped Spillway. Water, 10(10), 1478. doi:10.3390/w10101478Zhang, W., Wang, J., Zhou, C., Dong, Z., & Zhou, Z. (2018). Numerical Simulation of Hydraulic Characteristics in A Vortex Drop Shaft. Water, 10(10), 1393. doi:10.3390/w10101393Xiang, M., Cheung, S. C. P., Tu, J. Y., & Zhang, W. H. (2014). A multi-fluid modelling approach for the air entrainment and internal bubbly flow region in hydraulic jumps. Ocean Engineering, 91, 51-63. doi:10.1016/j.oceaneng.2014.08.016Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. (2008). Journal of Fluids Engineering, 130(7), 078001. doi:10.1115/1.2960953Cartellier, A., & Achard, J. L. (1991). Local phase detection probes in fluid/fluid two‐phase flows. Review of Scientific Instruments, 62(2), 279-303. doi:10.1063/1.1142117Cartellier, A., & Barrau, E. (1998). Monofiber optical probes for gas detection and gas velocity measurements: conical probes. International Journal of Multiphase Flow, 24(8), 1265-1294. doi:10.1016/s0301-9322(98)00032-9Boyer, C., Duquenne, A.-M., & Wild, G. (2002). Measuring techniques in gas–liquid and gas–liquid–solid reactors. Chemical Engineering Science, 57(16), 3185-3215. doi:10.1016/s0009-2509(02)00193-8Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. doi:10.1080/00221688909499111Hager, W. H., & Li, D. (1992). Sill-controlled energy dissipator. Journal of Hydraulic Research, 30(2), 165-181. doi:10.1080/00221689209498932Bakhmeteff, B. A., & Matzke, A. E. (1936). The Hydraulic Jump in Terms of Dynamic Similarity. Transactions of the American Society of Civil Engineers, 101(1), 630-647. doi:10.1061/taceat.0004708Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), 591-608. doi:10.1080/00221689009499048Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., … Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011McCorquodale, J. A., & Khalifa, A. (1983). Internal Flow in Hydraulic Jumps. Journal of Hydraulic Engineering, 109(5), 684-701. doi:10.1061/(asce)0733-9429(1983)109:5(684)Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity Profiles of Developing and Developed Open Channel Flow. Journal of Hydraulic Engineering, 123(12), 1099-1105. doi:10.1061/(asce)0733-9429(1997)123:12(1099

    Characterization of Structural Properties in High Reynolds Hydraulic Jump Based on CFD and Physical Modeling Approaches

    Full text link
    [EN] A classical hydraulic jump with Froude number (Fr1=6) and Reynolds number (Re1=210,000) was characterized using the computational fluid dynamics (CFD) codes OpenFOAM and FLOW-3D, whose performance was assessed. The results were compared with experimental data from a physical model designed for this purpose. The most relevant hydraulic jump characteristics were investigated, including hydraulic jump efficiency, roller length, free surface profile, distributions of velocity and pressure, and fluctuating variables. The model outcome was also compared with previous results from the literature. Both CFD codes were found to represent with high accuracy the hydraulic jump surface profile, roller length, efficiency, and sequent depths ratio, consistently with previous research. Some significant differences were found between both CFD codes regarding velocity distributions and pressure fluctuations, although in general the results agree well with experimental and bibliographical observations. This finding makes models with these characteristics suitable for engineering applications involving the design and optimization of energy dissipation devices.The research presented herein was possible thanks to the Generalitat Valenciana predoctoral grants [Ref. (2015/7521)], in collaboration with the European Social Funds and to the research project La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy.Macián Pérez, JF.; Bayón, A.; García-Bartual, R.; López Jiménez, PA.; Vallés-Morán, FJ. (2020). Characterization of Structural Properties in High Reynolds Hydraulic Jump Based on CFD and Physical Modeling Approaches. Journal of Hydraulic Engineering. 146(12):1-13. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001820S11314612Abdul Khader, M. H., & Elango, K. (1974). TURBULENT PRESSURE FIELD BENEATH A HYDRAULIC JUMP. Journal of Hydraulic Research, 12(4), 469-489. doi:10.1080/00221687409499725Bakhmeteff B. A. and A. E. Matzke. 1936. “The hydraulic jump in terms of dynamic similarity.” In Vol. 101 of Proc. American Society of Civil Engineers 630–647. Reston VA: ASCE.Bayon A. 2017. “Numerical analysis of air-water flows in hydraulic structures using computational fluid dynamics (CFD).” Ph.D. thesis Research Institute of Water and Environmental Engineering Universitat Politècnica de València.Bayon-Barrachina, A., & Lopez-Jimenez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 17(4), 662-678. doi:10.2166/hydro.2015.041Bayon A. J. F. Macián-Pérez F. J. Vallés-Morán and P. A. López-Jiménez. 2019. “Effect of RANS turbulence model in hydraulic jump CFD simulations.” In E-proc. 38th IAHR World Congress. Panama City Panama: Spanish Ministry of Economy.Bayon, A., Toro, J. P., Bombardelli, F. A., Matos, J., & López-Jiménez, P. A. (2018). Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways. Journal of Hydro-environment Research, 19, 137-149. doi:10.1016/j.jher.2017.10.002Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. ​José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., … Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011Biswas, R., & Strawn, R. C. (1998). Tetrahedral and hexahedral mesh adaptation for CFD problems. Applied Numerical Mathematics, 26(1-2), 135-151. doi:10.1016/s0168-9274(97)00092-5Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 33, 1-22. doi:10.1016/j.envsoft.2012.02.001Bombardelli, F. A., Meireles, I., & Matos, J. (2010). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263-288. doi:10.1007/s10652-010-9188-6Bradshaw, P. (1997). Understanding and prediction of turbulent flow—1996. International Journal of Heat and Fluid Flow, 18(1), 45-54. doi:10.1016/s0142-727x(96)00134-8Caishui, H. (2012). Three-dimensional Numerical Analysis of Flow Pattern in Pressure Forebay of Hydropower Station. Procedia Engineering, 28, 128-135. doi:10.1016/j.proeng.2012.01.694Castillo L. G. J. M. Carrillo J. T. García and A. Vigueras-Rodríguez. 2014. “Numerical simulations and laboratory measurements in hydraulic jumps.” In Proc. 11th Int. Conf. of Hydroinformatics. New York: Spanish Ministry of Economy.Castro-Orgaz, O., & Hager, W. H. (2009). Classical hydraulic jump: basic flow features. Journal of Hydraulic Research, 47(6), 744-754. doi:10.3826/jhr.2009.3610Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. (2008). Journal of Fluids Engineering, 130(7), 078001. doi:10.1115/1.2960953Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896-909. doi:10.1016/j.expthermflusci.2011.01.009Chanson, H. (2006). Bubble entrainment, spray and splashing at hydraulic jumps. Journal of Zhejiang University-SCIENCE A, 7(8), 1396-1405. doi:10.1631/jzus.2006.a1396Chanson, H. (2009). Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. European Journal of Mechanics - B/Fluids, 28(2), 191-210. doi:10.1016/j.euromechflu.2008.06.004Chanson, H. (2013). Hydraulics of aerated flows:qui pro quo? Journal of Hydraulic Research, 51(3), 223-243. doi:10.1080/00221686.2013.795917Chanson, H., & Brattberg, T. (2000). Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow, 26(4), 583-607. doi:10.1016/s0301-9322(99)00016-6Chanson, H., & Gualtieri, C. (2008). Similitude and scale effects of air entrainment in hydraulic jumps. Journal of Hydraulic Research, 46(1), 35-44. doi:10.1080/00221686.2008.9521841Chanson, H., & Montes, J. S. (1995). Characteristics of Undular Hydraulic Jumps: Experimental Apparatus and Flow Patterns. Journal of Hydraulic Engineering, 121(2), 129-144. doi:10.1061/(asce)0733-9429(1995)121:2(129)Cheng, C.-K., Tai, Y.-C., & Jin, Y.-C. (2017). Particle Image Velocity Measurement and Mesh-Free Method Modeling Study of Forced Hydraulic Jumps. Journal of Hydraulic Engineering, 143(9), 04017028. doi:10.1061/(asce)hy.1943-7900.0001325Dong, Wang, Vetsch, Boes, & Tan. (2019). Numerical Simulation of Air–Water Two-Phase Flow on Stepped Spillways Behind X-Shaped Flaring Gate Piers under Very High Unit Discharge. Water, 11(10), 1956. doi:10.3390/w11101956Fuentes-Pérez, J. F., Silva, A. T., Tuhtan, J. A., García-Vega, A., Carbonell-Baeza, R., Musall, M., & Kruusmaa, M. (2018). 3D modelling of non-uniform and turbulent flow in vertical slot fishways. Environmental Modelling & Software, 99, 156-169. doi:10.1016/j.envsoft.2017.09.011Gualtieri, C., & Chanson, H. (2007). Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Environmental Fluid Mechanics, 7(3), 217-238. doi:10.1007/s10652-006-9016-1Hager, W. H. (1992). Energy Dissipators and Hydraulic Jump. Water Science and Technology Library. doi:10.1007/978-94-015-8048-9Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. doi:10.1080/00221688909499111Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), 591-608. doi:10.1080/00221689009499048Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914Hirt, C. ., & Nichols, B. . (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. doi:10.1016/0021-9991(81)90145-5Ho, D. K. H., & Riddette, K. M. (2010). Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Australian Journal of Civil Engineering, 6(1), 81-104. doi:10.1080/14488353.2010.11463946Jesudhas, V., Balachandar, R., Roussinova, V., & Barron, R. (2018). Turbulence Characteristics of Classical Hydraulic Jump Using DES. Journal of Hydraulic Engineering, 144(6), 04018022. doi:10.1061/(asce)hy.1943-7900.0001427Jesudhas, V., Roussinova, V., Balachandar, R., & Barron, R. (2017). Submerged Hydraulic Jump Study Using DES. Journal of Hydraulic Engineering, 143(3), 04016091. doi:10.1061/(asce)hy.1943-7900.0001231KIM, J. (2004). A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k?? turbulence model. Atmospheric Environment, 38(19), 3039-3048. doi:10.1016/j.atmosenv.2004.02.047Kim, S.-E., & Boysan, F. (1999). Application of CFD to environmental flows. Journal of Wind Engineering and Industrial Aerodynamics, 81(1-3), 145-158. doi:10.1016/s0167-6105(99)00013-6Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity Profiles of Developing and Developed Open Channel Flow. Journal of Hydraulic Engineering, 123(12), 1099-1105. doi:10.1061/(asce)0733-9429(1997)123:12(1099)Langhi, M., & Hosoda, T. (2018). Three-dimensional unsteady RANS model for hydraulic jumps. ISH Journal of Hydraulic Engineering, 1-8. doi:10.1080/09715010.2018.1555775Liu, M., Rajaratnam, N., & Zhu, D. Z. (2004). Turbulence Structure of Hydraulic Jumps of Low Froude Numbers. Journal of Hydraulic Engineering, 130(6), 511-520. doi:10.1061/(asce)0733-9429(2004)130:6(511)Liu, T., Song, L., Fu, W., Wang, G., Lin, Q., Zhao, D., & Yi, B. (2018). Experimental Study on Single-Hole Injection of Kerosene into Pressurized Quiescent Environments. Journal of Energy Engineering, 144(3), 04018014. doi:10.1061/(asce)ey.1943-7897.0000536Ma, J., Oberai, A. A., Lahey, R. T., & Drew, D. A. (2011). Modeling air entrainment and transport in a hydraulic jump using two-fluid RANS and DES turbulence models. Heat and Mass Transfer, 47(8), 911-919. doi:10.1007/s00231-011-0867-8McCorquodale, J. A., & Khalifa, A. (1983). Internal Flow in Hydraulic Jumps. Journal of Hydraulic Engineering, 109(5), 684-701. doi:10.1061/(asce)0733-9429(1983)109:5(684)McDonald P. W. 1971. “The computation of transonic flow through two-dimensional gas turbine cascades.” In Proc. ASME 1971 Int. Gas Turbine Conf. and Products Show. Houston: International Gas Turbine Institute.Mossa, M. (1999). On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research, 37(4), 541-558. doi:10.1080/00221686.1999.9628267Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic Design of a USBR Type II Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. doi:10.1061/(asce)ir.1943-4774.0001150Resch, F. J., & Leutheusser, H. J. (1972). Le ressaut hydraulique : mesures de turbulence dans la région diphasique. La Houille Blanche, 58(4), 279-293. doi:10.1051/lhb/1972021Sarfaraz M. and J. Attari. 2011. “Numerical simulation of uniform flow region over a steeply sloping stepped spillway.” In Proc. 6th National Congress on Civil Engineering. Semnan Iran: Iran Water and Power Development Company.Spalart, P. . (2000). Strategies for turbulence modelling and simulations. International Journal of Heat and Fluid Flow, 21(3), 252-263. doi:10.1016/s0142-727x(00)00007-2Speziale, C. G., & Thangam, S. (1992). Analysis of an RNG based turbulence model for separated flows. International Journal of Engineering Science, 30(10), 1379-IN4. doi:10.1016/0020-7225(92)90148-aSpoljaric A. 1984. “Dynamic characteristics of the load on the bottom plate under hydraulic jump.” In Proc. Int. Conf. Hydrosoft’84: Hydraulic Engineering Software. New York: Elsevier.Teuber, K., Broecker, T., Bayón, A., Nützmann, G., & Hinkelmann, R. (2019). CFD-modelling of free surface flows in closed conduits. Progress in Computational Fluid Dynamics, An International Journal, 19(6), 368. doi:10.1504/pcfd.2019.103266Toso, J. W., & Bowers, C. E. (1988). Extreme Pressures in Hydraulic‐Jump Stilling Basins. Journal of Hydraulic Engineering, 114(8), 829-843. doi:10.1061/(asce)0733-9429(1988)114:8(829)Valero D. and D. B. Bung. 2015. “Hybrid investigations of air transport processes in moderately sloped stepped spillway flows.” In Vol. 28 of E-proc. 36th IAHR World Congress 1–10. The Hague Netherlands: IHE Delft.Valero, D., & Bung, D. B. (2016). Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow. Environmental Modelling & Software, 82, 218-228. doi:10.1016/j.envsoft.2016.04.030Valero, D., Viti, N., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment. Water, 11(1), 36. doi:10.3390/w11010036Viti, N., Valero, D., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. doi:10.3390/w11010028von Kármán T. 1930. “Mechanische Ähnlichkeit und Turbulenz.” In Proc. 3rd Int. Congress on Applied Mechanics. New York: Springer.Wang H. 2014. “Turbulence and air entrainment in hydraulic jumps.” Ph.D. thesis Dept. of Civil Engineering Univ. of Queensland.Wang, H., & Chanson, H. (2013). Air entrainment and turbulent fluctuations in hydraulic jumps. Urban Water Journal, 12(6), 502-518. doi:10.1080/1573062x.2013.847464Wang, H., & Chanson, H. (2015). Experimental Study of Turbulent Fluctuations in Hydraulic Jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi:10.1061/(asce)hy.1943-7900.0001010Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620. doi:10.1063/1.168744Witt, A., Gulliver, J., & Shen, L. (2015). Simulating air entrainment and vortex dynamics in a hydraulic jump. International Journal of Multiphase Flow, 72, 165-180. doi:10.1016/j.ijmultiphaseflow.2015.02.012Wu, J., Zhou, Y., & Ma, F. (2018). Air entrainment of hydraulic jump aeration basin. Journal of Hydrodynamics, 30(5), 962-965. doi:10.1007/s42241-018-0088-4Xiang, M., Cheung, S. C. P., Tu, J. Y., & Zhang, W. H. (2014). A multi-fluid modelling approach for the air entrainment and internal bubbly flow region in hydraulic jumps. Ocean Engineering, 91, 51-63. doi:10.1016/j.oceaneng.2014.08.016Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424Zhang, G., Wang, H., & Chanson, H. (2012). Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189-204. doi:10.1007/s10652-012-9254-

    Efectividad de las actividades preventivas a los 8 años de su introducción en una consulta de medicina general de un centro de salud

    Get PDF
    ObjetivoPrincipal: valorar la modificación del riesgo coronario (RC) en pacientes adultos tras 8 años de su incorporación al Programa Actividades Preventivas y Promoción Salud (PAPPS). Secundario: determinar nivel de vacunación antitetánica alcanzado y cumplimiento de actividades.DiseñoEstudio de intervención sin asignación aleatoria «antes-después».EmplazamientoUna consulta de medicina general de un centro de salud.PacientesUn total de 429 pacientes (204 varones, 225 mujeres) de 30-65 años seguidos durante 8 años, captados por búsqueda activa de casos en la consulta diaria.IntervencionesDeterminación de tensión arterial, colesterol, peso, tabaquismo, ingesta etílica, estado vacunal antitetánico, cálculo del RC a los 10 años según Framinghan y grado de cumplimiento de actividades. Estas variables se determinaron al inicio, a los 4 y a los 8 años. Datos obtenidos de la historia clínica.ResultadosPoblación total: a los 8 años descenso del RC, 0,8 (IC diferencia, 0,4-1,2), equivalente al 8,5% del inicial. Incremento obtenido de la vacunación antitetánica correcta del 64,4% (IC diferencia, 59,9-69%). Cumplimiento actividades al inicio y al octavo año: tensión, 100%, 71%; consumo tabaco, 99,5%, 71%; determinación colesterol, 89%, 64%. Subgrupo RC inicial alto: a los 8 años descenso del RC, 6,7 (IC diferencia, 4,9-8,5), equivalente al 24,8% del inicial.ConclusionesEn la población total el descenso del RC obtenido no es clínicamente significativo, mientras que en el subgrupo con RC inicial alto el descenso sí lo ha sido. Probablemente debería hacerse búsqueda activa de los pacientes con RC alto y actuar sobre ellos.ObjectivesMain: to assess the change in coronary risk (CR) in adults after 8 years of their involvement in the Programme of Preventive Activities and Health Promotion (PAPPS). Secondary: to determine the level of anti-tetanus vaccination reached and patients' compliance with activities.Design«Before and after» intervention study without random allocation.SettingA general medical clinic at a health centre.Patients429 patients (204 men, 225 women) between 30 and 65 monitored for 8 years, recruited by active search for cases at daily consultations.InterventionsBlood pressure, cholesterol, weight, tobacco habit, alcohol intake, anti-tetanus vaccination state, CR calculation at 10 years on the Framingham scale, and degree of compliance with activities were all determined at the start, at 4 years and at 8 years. Data was obtained from the clinical notes.ResultsTotal population: a 0.8 drop in CR (CI difference: 0.4-1.2), equivalent to 8.5% of the initial figure. 64.4% increase in correct anti-tetanus vaccination (CI difference: 59.9-69). Compliance with activities at the start and after eight years: pressure 100%, 71%; tobacco consumption 99.5%, 71%; cholesterol determination 89%, 64%. Initially high CR sub-group: 6.7 drop of CR at 8 years (CI difference: 4.9-8.5), equivalent to 24.8% of the initial figure.ConclusionsIn the total population, the CR drop found was not clinically significant, whereas in the initially high CR sub-group the drop was. There should probably be an active search made for patients with high CR and action taken on them

    Identificación y cría de microhimenópteros parasitoides de Bemisia tabaci (Gennadius) presentes en una plantación comercial de pimiento (Capsicum annuum L.) bajo carpa plástica y en la vegetación asociada al mismo

    Get PDF
    La mosca blanca Bemisia tabaci (Gennadius) se encuentra entre los insectos plaga de mayor importancia económica que afectan al cultivo de pimiento bajo carpa plástica. El daño provocado por las mismas en la planta hospedera se debe a la succión de la savia y a la producción de sustancias azucaradas que favorecen el desarrollo de hongos (fumagina) sobre la superficie de las hojas, lo que afecta la capacidad fotosintética y la evapotranspiración, mancha hojas y frutos, disminuyendo el valor estético y la calidad comercial del cultivo. Otro daño indirecto y más grave aún que el anterior, es la transmisión de enfermedades virales a las especies en las que se hospeda (Byrne y Bellows, 1991; Hilje, 2001; González Bez et al., 2002). Se caracteriza por ser un insecto polífago, con un amplio rango de plantas hospederas que incluye ornamentales, malezas y cultivos hortícolas (Polack, 2005).Fil: Figueroa, M. F.. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; ArgentinaFil: Ghiggia, L. I.. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; ArgentinaFil: Paz, M. R.. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; ArgentinaFil: Macián, A. J.. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; ArgentinaFil: Maza, Noelia. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernández, J. A.. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; ArgentinaFil: Jaime, A. P.. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; Argentin

    Design of hydraulic installations using computational fluid dynamics (CFD)

    Full text link
    [ES] La cuantificación de pérdidas de carga causadas por elementos singulares en instalaciones hidráulicas no puede realizarse determinísticamente, por lo que debe llevarse a cabo su ensayo en laboratorio. No obstante, para el diseño del banco de ensayos es necesario estimar dichas pérdidas. En el presente trabajo, se plantea un método iterativo apoyado en un modelo de dinámica de fluidos computacional (CFD). En concreto, se emplea el caso de una instalación para un tubo Venturi y la plataforma de código abierto OpenFOAM con cierre de turbulencia Standard k-ε, obteniéndose así una instalación correctamente dimensionada para el análisis del rango de caudales deseado.[EN] The quantification of energy losses caused by singularities in hydraulic facilities cannot be deterministically conducted. To do so, laboratory tests must be performed. However, in order to design the necessary test benches, the losses to assess must be estimated. In the work presented herein, an iterative method supported by a computational fluid dynamics (CFD) model is presented. In particular, the case of facility for a Venturi tube is employed, along with the open-source code OpenFOAM, using the RNG k-¿ turbulence closure. As a result, a well-designed facility capable of supplying the desired range of flowrates is obtainedEsta investigación ha sido posible en el marco del proyecto HIDRASENSE (Plan Estatal de I+D+i MINECO, Convocatoria Retos-Colaboración 2014).Bayón, A.; Vallés-Morán, FJ.; Macián Pérez, JF.; López Jiménez, PA. (2017). Diseño de instalaciones hidráulicas experimentales con apoyo de la dinámica de fluidos computacional (CFD). Revista Hidrolatinoamericana de Jóvenes Investigadores y Profesionales. (1):23-26. http://hdl.handle.net/10251/112710S2326

    Desarrollo de un procedimiento para el cálculo acoplado CFD-Neutrónico con Ansys CFX 12.1 y Parcs

    Full text link
    Se ha desarrollado una nueva herramienta computacional para los cálculos de reactor es nucleares basada en el acople entre el código de transporte neutrónico PARCS y el código comercia l de dinámica de fluido s computacional (CFD) ANSYS CFX 12.1. En este trabajo se presenta la metodología desarrollada para el a cople de los códigos ANSYS CFX/PARCS. En el pasado, las metodologías desarrolladas tenían por objeto el acopl e de códigos neutrónicos 3D con códigos termohidráulicos 1D. En este trabajo se presenta el d esarro llo de un procedimiento para el acopl e de los códigos ANSYS CFX/PARCS siendo l as metodologías existentes acopl e s de código s neutrónicos tridimensionales con códigos termohidráulicos unidimensionales.Peña, C.; Chiva, S.; Miró Herrero, R.; Barrachina Celda, TM.; Pellacani, F.; Macián Juan, R. (2011). Desarrollo de un procedimiento para el cálculo acoplado CFD-Neutrónico con Ansys CFX 12.1 y Parcs. Grupo Senda. http://hdl.handle.net/10251/34015

    simulación de un elemento combustible PWR simplificado mediante los códigos acoplados CFD-Neutrónicos ANSYS CFX 12.1 y PARCS

    Full text link
    Se ha desarrollado una nueva herramienta computacional para los cálculos de reactores nucleares basada en el acople entre el código de transporte neutrónico PARCS y e l código comercial de dinámica de fluidos computacional (CFD) ANSYS CFX 12.1. En esta cont ribución se presentan los primeros resultados de la aplicación de esta nueva metodología para el acople de códigos CFD con códigos neutrónicos. C on esta nueva herramienta de simulación se abren nuevas posibilidades en el diseño de elementos combustibles, ya que contribuye a un mejor entendimiento y una mejor simulación de los procesos de transferencia de calor y fenómenos específicos de dinámica de fluidos como el 'crossflow'. La simulación de transitorios de inserción de barra de control, dilución de boro o inyección de agua fría se pueden llevar a cabo con un nivel de precisión que no es posible alcanzar con las metodologías actuales basadas en el uso de códigos de sistema.Peña Monferrer, C.; Chiva, S.; Miró Herrero, R.; Barrachina Celda, TM.; Pellacani, F.; Macian Juan, R. (2011). simulación de un elemento combustible PWR simplificado mediante los códigos acoplados CFD-Neutrónicos ANSYS CFX 12.1 y PARCS. Grupo Senda. http://hdl.handle.net/10251/34068S10
    corecore